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Abstract—Continuous queries are used to monitor changes to time 
varying data and to provide results useful for online decision making. 
Typically a user desires to obtain the value of some aggregation 
function over distributed data items, for example, to know value of 
portfolio for a client; or the AVG of temperatures sensed by a set of 
sensors. In these queries a client specifies a coherency requirement 
as part of the query. We present a low-cost, scalable technique to 
answer continuous aggregation queries using a network of 
aggregators of dynamic data items. In such a network of data 
aggregators, each data aggregator serves a set of data items at 
specific coherencies. Just as various fragments of a dynamic 
webpage are served by one or more nodes of a content distribution 
network, our technique involves decomposing a client query into 
subqueries and executing subqueries on judiciously chosen data 
aggregators with their individual subquery incoherency bounds. We 
provide a technique for getting the optimal set of subqueries with 
their incoherency bounds which satisfies client query’s coherency 
requirement with least number of refresh messages sent from 
aggregators to the client. For estimating the number of refresh 
messages, we build a query cost model which can be used to estimate 
the number of messages required to satisfy the client specified 
incoherency bound. Performance results using real-world traces 
show that our cost-based query planning leads to queries being 
executed using less than one third the number of messages required 
by existing schemes. 

1. INTRODUCTION 

Applications such as auctions, personal portfolio valuations 
for financial decisions, sensors-based monitoring, route 
planning based on traffic information, etc., make extensive use 
of dynamic data. For such applications, data from one or more 
independent data sources may be aggregated to determine if 
some action is warranted. Given the increasing number of 
such applications that make use of highly dynamic data, there 
is significant interest in systems that can efficiently deliver the 
relevant updates automatically. As an example, consider a user 
who wants to track a portfolio of stocks in different 
(brokerage) accounts. Stock data values from possibly 
different sources are required to be aggregated to satisfy user’s 
requirement. 

These aggregation queries are long running queries as data are 
continuously changing and the user is interested in 
notifications when certain conditions hold. Thus, responses to 

these queries are refreshed continuously. In these continuous 
query applications, users are likely to tolerate some inaccuracy 
in the results. That is, the exact data values at the 
corresponding data sources need not be reported as long as the 
query results satisfy user specified accuracy requirements. For 
instance, a portfolio tracker may be happy with an accuracy of 
$10. 

Data Incoherency: Data accuracy can be specified in terms of 
incoherency of a data item, defined as the absolute difference 
in value of the data item at the data source and the value 
known to a client of the data. Let vi(t) denote the value of the 
ith data item at the data source at time t; and let the value the 
data item known to the client be ui(t). Then, the data 
incoherency at the client is given by |vi(t) - ui(t)|. For a data 
item which needs to be refreshed at an incoherency bound C a 
data refresh message is sent to the client as soon as data 
incoherency exceeds C, i.e |vi(t) - ui(t)| > C. 

Network of data aggregators (DA): Data refresh from data 
sources to clients can be done using push- or pull-based 
mechanisms. In a push-based mechanism data sources send 
update messages to clients on their own whereas in a pull-
based mechanism data sources send messages to the client 
only when the client makes a request.We assume the push-
based mechanism for data transfer between data sources and 
clients. For scalable handling of push based data 
dissemination, network of data aggregators are proposed in the 
literature [5], [7], [22]. In such network of data aggregators, 
data refreshes occur from data sources to the clients through 
one or more data aggregators. 

In this paper, we assume that each data aggregator maintains 
its configured incoherency bounds for various data items. 
From a data dissemination capability point of view, each data 

aggregator is characterized by a set of (di,ci) pairs, where di is 
a data item which the DA can disseminate at an incoherency 

bound ci. The configured incoherency bound of a data item at 
a data aggregator can be maintained using any of following 
methods: 1) The data source refreshes the data value of the 
DA whenever DA’s incoherency bound is about to get 



Query Planning for Dynamic Queries using Data Aggregators 67 
 

 

Advances in Computer Science and Information Technology (ACSIT) 
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 9; April-June, 2015 

violated. This method has scalability problems. 2) Data 
aggregator(s) with tighter incoherency bound help the DA to 
maintain its incoherency bound in a scalable manner as 
explained in [5], [7]. 

Example 1. In a network of data aggregators managing data 

items d1 - d4, various aggregators can be characterized as 

 

 

Aggregator a1 can serve values of d1 with an incoherency 

bound greater than or equal to 0.5 whereas a2 can disseminate 
the same data item at a looser incoherency bound of or more. 
In such a network of aggregators of multiple data items all the 
nodes can be considered as peers since a node ai can help 
another node ak to maintain incoherency bound of the data 
item d1 (incoherency bound of d1 at ai is tighter than that at 
ak) but the node ai gets values of another data item d2 from 
ak.  

2. AGGREGATE QUERIES AND THEIR 
EXECUTION  

In this paper, we present a method for executing continuous 
multidata aggregation queries, using a network of data 
aggregators, with the objective of minimizing the number of 
refreshes from data aggregators to the client. First, we give 
two motivating scenarios where there are various options for 
executing a multidata aggregation query and one must select a 
particular option to minimize the number of messages. 

Consider a client query Q=50d1) 200d2)150d3, where d1, d2, 

d3 are different stocks in a portfolio, with a required 
incoherency bound of $80. We want to execute this query over 
the data aggregators given in Example 1, minimizing the 
number of refreshes. 

In the above case a limited number of options are 
available for executing the aggregation query. 
Specifically we answer the question: Given a client 
query posed over a hypothetical database of 
multiple data sources, what subqueries should be 
posed at various data aggregators so that the number 
of refreshes from these aggregators to the client can 
be minimized? We use additive aggregation queries 
to develop our approach in detail and toward the 
end of the paper describe how max/min queries can 
be handled. 

For answering the multidata aggregation query, there are three 
options for the client to get the query results. First, the client 

may get the data items d1, d 2, and d3 separately. The query 

incoherency bound can be divided among data items in 
various ways ensuring that query incoherency is below the 
incoherency bound. In this paper, we show that getting data 
items independently is a costly option. This strategy ignores 
the fact that the client is interested only in the aggregated 
value of the data items and various aggregators can 
disseminate more than one data item. 

Second, if a single DA can disseminate all three data items 
required to answer the client query, the DA can construct a 

composite data item corresponding to the client query (50d1) 

200d2)150d3) and disseminate the result to the client so that 
the query incoherency bound is not violated. It is obvious that 
if we get the query result from a single DA, the number of 
refreshes will be minimum (as data item updates may cancel 
out each other, thereby maintaining the query results within 
the incoherency bound). As different data aggregators 
disseminate different subsets of data items, no data aggregator 
may have all the data items required to execute the client 
query which is indeed the case in Example 1. Further, even if 
an aggregator can refresh all the data items, it may not be able 
to satisfy the query coherency requirements. In such cases the 
query has to be executed with data from multiple aggregators. 

A third option is to divide the query into a number of 
subqueries and get their values from individual DAs. In that 
case, the client query result is obtained by combining the 
results of multiple subqueries. For the DAs given in 
Example1, the query Q can be divided in two alternative ways: 

Plan 1. Result of subquery 50d1 ) 150d3 is served by a1, 

whereas value of d2 is served 

by a2. 

Plan 2. Value of d3 is served by a1, whereas result of 

subquery 50d1 ) 200d2 is served by a2. 

In both the plans, combining the subquery values at the client 
gives the query result. But, selecting the optimal plan among 
various options is not trivial. Intuitively, we should be 
selecting the plan with lesser number of sub queries. But that 
is not guaranteed to be the plan with the least number of 
messages. Further, we should select the subqueries such that 
updates to various data items appearing in a subquery have 
more chances of canceling each other as that will reduce the 
need for refresh to the client. In the above example, if updates 

to d1 and d3 are such that when d1 increases, d3 decreases, 
and vice versa, then selecting plan1 may be beneficial. We 
give a method to select the query plan based on these 
observations. While solving the above problem, we ensure that 
each data item for a client query is disseminated by one and 
only one data aggregator. Although a query can be divided in 
such a way that a single data item is served by multiple DAs 
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(e.g., 50d1 ) 200d2 ) 150d3 is divided into two subqueries 

50d1 ) 130d2 and 70d2 ) 150d3), in doing so the same data 
item is processed at multiple aggregators, increasing the 
unnecessary processing load (further, in case of paid data 
subscriptions it is not prudent to get the same data item from 
multiple sources). By dividing the client query into disjoint 
subqueries we ensure that a data item update is processed only 
once for each query. 

Subquery incoherency bounds are required to be derived using 
the query incoherency bounds such that, besides satisfying the 
client coherency requirements, the chosen DA (where the 
subquery is to be executed) is capable of satisfying the 
allocated subquery incoherency bound. For example, in plan1, 
incoherency bound allocated to the subquery 50d1 ) 150d3 
should be greater than 55(=50*0.5)150*0.2)as that is the 
tightest incoherency bound which the aggregator a1 can satisfy 
for the subquery 50d1 ) 150d3. We show that the number of 
refreshes also depends on the division of the query 
incoherency bounds among subquery incoherency bounds. A 
similar result was reported for data incoherency bounds in 
[11]. 

3. DATA DISSEMINATION COST MODEL 

In this section, we present the model to estimate the number of 
refreshes required to disseminate a data item while 
maintaining a certain incoherency bound. There are two 
primary factors affecting the number of messages that are 
needed to maintain the coherency requirement: 1) the 
coherency requirement itself and 2) dynamics of the data. 

2.1 Incoherency Bound Model 

Consider a data item which need to be disseminated at an 
incoherency bound C, i.e., new value of the data item will be 
pushed if the value deviates by more than C from the last 
pushed value. Thus, the number of dissemination messages 
will be proportional to the probability of jv(t) ≤ u(t)j greater 
than C for data value v(t) at the source/aggregator and u(t) at 
the client, at time t. A data item can be modeled as a discrete 
time random process [10] where each step is correlated with 
its previous step. In a push-based dissemination, a data source 
can follow one of the following schemes: 

 

 

 

 
Fig. 1: Number of pushes versus incoherency bounds. 

 
Data source pushes the data value whenever it differs from the 
last pushed value by an amount more than C.  

1. Client estimates data value based on server specified 
parameters [12], [16]. The source pushes the new data 
value whenever it differs from the (client) estimated value 
by an amount more than C. 

In both these cases, value at the source can be modeled as a 
random process with average as the value known at the client. 
In case 2, the client and the server estimate the data value as 
the mean of the modeled random process, whereas in case 1 
deviation from the last pushed value can be modeled as zero 
mean process. Using Chebyshev’s inequality [10] 

P (|v(t) ≤ u(t)| > C) α 1=C
2
 (4)

 
Thus, we hypothesize that the number of data refresh 
messages is inversely proportional to the square of the 
incoherency bound. A similar result was reported in [5] where 
data dynamics were modeled as random walks. 

2.2 Data Dynamics Model 

We considered two possible options to model data dynamics. 
As a first option, the data dynamics can be quantified based on 
standard deviation of the data item values. 

 

 

 

Fig. 2: Number of pushes versus data sumdiff (a) C = 0:001, (b)  
C = 0:01, and (c) C = 0:1. 

 

 
whereas higher order coefficients 
represent 

We take an example to 
show why standard 

transient changes in the value of data 
item. 

deviation is not a good 
measure of data We hypothesize that the cost of data 
dynamics in our case: 
Suppose data values dissemination for a data item can be 
in consecutive instances for 
a data item d1 

approximated by a function of the 
first FFT 

are {0, 4, 0, 4, 0, 4, 0, 4} 
whereas for 

coefficient. Specifically, the cost of 
data 

another data item d2 values 
are {0, 0, 0, 0, 4, dissemination for a data item will be 
4, 4, 4}. Suppose both data 
items are 

proportional to data sumdiff defined 
as: 

disseminated with an 
incoherency bound of   
3. It can be seen that the 
number of Rs = ∑ |si - si-1|, (5) 
messages required for 
maintaining the 

i  
  

incoherency bound will be 
7 and 1 for data   
items d1 and d2, 
respectively, whereas both 

where si and si-1 are the sampled 
values of a 
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data items have the same 
standard deviation 

data item S at ith and (i - 1)th time 
instances 

(=2:138). Thus, we need a 
measure which 

(i.e., consecutive ticks). In practice, 
sumdiff 

captures data changes along 
with its 

value for a data item can be calculated 
at the 

temporal properties. This 
motivates us to 

data source by taking running average 
of 

examine the second 
measure. difference between data values for 

 
consecutive ticks. For our 
experiments, we 

As a second option we 
considered Fast calculated the sumdiff values using 
Fourier Trans-form (FFT) 
which is used in 

exponential window moving average 
with 

the digital signal processing 
domain to 

each window having 100 samples and 
giving 

characterize a digital signal. 
FFT captures 30 percent weight to the most recent 
number of changes in data 
value, amount of window.  
changes, and their timings. 
Thus, FFT can   
be used to model data 
dynamics but it has a 

2.3 Combining 
Data Dissemination 

problem. To estimate the 
number of Models  
refreshes required to 
disseminate a data item   
we need a function over 
FFT coefficients 

Number of refresh messages is 
proportional 

which can return a scalar 
value. The number to data sumdiff Rs and inversely 
of FFT coefficients can be 
as high as the 

proportional to square of the 
incoherency 

number of changes in the 
data value. Among 

bound (C2). Further, we can see that 
we need 

FFT coefficients, 0th order 
coefficient 

not disseminate any message when 
either 

identifies average value of 
the data item, data value is not changing (Rs = 0) or 

 
incoherency bound is unlimited 
(1=C2 = 0).  

 
Thus, for a given data item S, disseminated with an 
incoherency bound C, the data dissemination cost is 

proportional to Rs=C
2

. In the next section, we use this data 
dissemination cost model for developing cost model for 
additive aggregation queries. 

4. QUERY PLANNING FOR WEIGHTED ADDITIVE 
AGGREGATION QUERIES 

For executing an incoherency bounded continuous query, a 
query plan is required. The query planning problem can be 
stated as: 

 

Inputs 

1. A network of data aggregators in the form of a 
relation f (A, D, C ) specifying the N data aggregators 

ak Є A(1 ≤ k ≤ N), set Dk ⊆ D of data items 

disseminated by the data aggregator ak, and 

incoherency bound tkj which the aggregator ak can 

ensure for each data item dkj Є Dk. 

2. Client query q and its incoherency bound Cq. An additive 

aggregation query q can be represented as ∑ wqi dqi where 

wqi is the weight of the data item d qi for 1 ≤ i ≤ nq. 

Outputs 

1. qk for 1 ≤ k ≤ N, i.e., subquery for each data aggregator 

ak.  

2. Cqk for 1 ≤ k ≤ N, i.e., incoherency bounds for all the 
subqueries.  

Thus, to get a query plan we need to perform following tasks: 

1. Determining subqueries: For the client query q get 

subqueries qks for each data aggregator.  

2. Dividing incoherency bound: Divide the query 
incoherency bound Cq among subqueries to get Cqk s  

5. CONCLUSION 

This paper presents a cost-based approach to minimize the 
number of refreshes required to execute an incoherency 
bounded continuous query. We assume the existence of a 
network of data aggregators, where each DA is capable of 
disseminating a set of data items at their prespecified 
incoherency bounds. We developed an important measure for 
data dynamics in the form of sumdiff which, as we discussed 
in Section 2, is a more appropriate measure compared to the 
widely used standard deviation based measures. For optimal 
query execution we divide the query into subqueries and 
evaluate each subquery at a judiciously chosen data 
aggregator. 
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