
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 9; April-June, 2015 pp. 66-70
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

Query Planning for Dynamic Queries using

Data Aggregators

Nadia Nisar

Department of Computer Science and Engineering Al-Falah University, Faridabad, Haryana-India
E-mail: nadia.nisar786@gmail.com

Abstract—Continuous queries are used to monitor changes to time
varying data and to provide results useful for online decision making.
Typically a user desires to obtain the value of some aggregation
function over distributed data items, for example, to know value of
portfolio for a client; or the AVG of temperatures sensed by a set of
sensors. In these queries a client specifies a coherency requirement
as part of the query. We present a low-cost, scalable technique to
answer continuous aggregation queries using a network of
aggregators of dynamic data items. In such a network of data
aggregators, each data aggregator serves a set of data items at
specific coherencies. Just as various fragments of a dynamic
webpage are served by one or more nodes of a content distribution
network, our technique involves decomposing a client query into
subqueries and executing subqueries on judiciously chosen data
aggregators with their individual subquery incoherency bounds. We
provide a technique for getting the optimal set of subqueries with
their incoherency bounds which satisfies client query’s coherency
requirement with least number of refresh messages sent from
aggregators to the client. For estimating the number of refresh
messages, we build a query cost model which can be used to estimate
the number of messages required to satisfy the client specified
incoherency bound. Performance results using real-world traces
show that our cost-based query planning leads to queries being
executed using less than one third the number of messages required
by existing schemes.

1. INTRODUCTION

Applications such as auctions, personal portfolio valuations
for financial decisions, sensors-based monitoring, route
planning based on traffic information, etc., make extensive use
of dynamic data. For such applications, data from one or more
independent data sources may be aggregated to determine if
some action is warranted. Given the increasing number of
such applications that make use of highly dynamic data, there
is significant interest in systems that can efficiently deliver the
relevant updates automatically. As an example, consider a user
who wants to track a portfolio of stocks in different
(brokerage) accounts. Stock data values from possibly
different sources are required to be aggregated to satisfy user’s
requirement.

These aggregation queries are long running queries as data are
continuously changing and the user is interested in
notifications when certain conditions hold. Thus, responses to

these queries are refreshed continuously. In these continuous
query applications, users are likely to tolerate some inaccuracy
in the results. That is, the exact data values at the
corresponding data sources need not be reported as long as the
query results satisfy user specified accuracy requirements. For
instance, a portfolio tracker may be happy with an accuracy of
$10.

Data Incoherency: Data accuracy can be specified in terms of
incoherency of a data item, defined as the absolute difference
in value of the data item at the data source and the value
known to a client of the data. Let vi(t) denote the value of the
ith data item at the data source at time t; and let the value the
data item known to the client be ui(t). Then, the data
incoherency at the client is given by |vi(t) - ui(t)|. For a data
item which needs to be refreshed at an incoherency bound C a
data refresh message is sent to the client as soon as data
incoherency exceeds C, i.e |vi(t) - ui(t)| > C.

Network of data aggregators (DA): Data refresh from data
sources to clients can be done using push- or pull-based
mechanisms. In a push-based mechanism data sources send
update messages to clients on their own whereas in a pull-
based mechanism data sources send messages to the client
only when the client makes a request.We assume the push-
based mechanism for data transfer between data sources and
clients. For scalable handling of push based data
dissemination, network of data aggregators are proposed in the
literature [5], [7], [22]. In such network of data aggregators,
data refreshes occur from data sources to the clients through
one or more data aggregators.

In this paper, we assume that each data aggregator maintains
its configured incoherency bounds for various data items.
From a data dissemination capability point of view, each data

aggregator is characterized by a set of (di,ci) pairs, where di is
a data item which the DA can disseminate at an incoherency

bound ci. The configured incoherency bound of a data item at
a data aggregator can be maintained using any of following
methods: 1) The data source refreshes the data value of the
DA whenever DA’s incoherency bound is about to get

Query Planning for Dynamic Queries using Data Aggregators 67

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 9; April-June, 2015

violated. This method has scalability problems. 2) Data
aggregator(s) with tighter incoherency bound help the DA to
maintain its incoherency bound in a scalable manner as
explained in [5], [7].

Example 1. In a network of data aggregators managing data

items d1 - d4, various aggregators can be characterized as

Aggregator a1 can serve values of d1 with an incoherency

bound greater than or equal to 0.5 whereas a2 can disseminate
the same data item at a looser incoherency bound of or more.
In such a network of aggregators of multiple data items all the
nodes can be considered as peers since a node ai can help
another node ak to maintain incoherency bound of the data
item d1 (incoherency bound of d1 at ai is tighter than that at
ak) but the node ai gets values of another data item d2 from
ak.

2. AGGREGATE QUERIES AND THEIR
EXECUTION

In this paper, we present a method for executing continuous
multidata aggregation queries, using a network of data
aggregators, with the objective of minimizing the number of
refreshes from data aggregators to the client. First, we give
two motivating scenarios where there are various options for
executing a multidata aggregation query and one must select a
particular option to minimize the number of messages.

Consider a client query Q=50d1) 200d2)150d3, where d1, d2,

d3 are different stocks in a portfolio, with a required
incoherency bound of $80. We want to execute this query over
the data aggregators given in Example 1, minimizing the
number of refreshes.

In the above case a limited number of options are
available for executing the aggregation query.
Specifically we answer the question: Given a client
query posed over a hypothetical database of
multiple data sources, what subqueries should be
posed at various data aggregators so that the number
of refreshes from these aggregators to the client can
be minimized? We use additive aggregation queries
to develop our approach in detail and toward the
end of the paper describe how max/min queries can
be handled.

For answering the multidata aggregation query, there are three
options for the client to get the query results. First, the client

may get the data items d1, d 2, and d3 separately. The query

incoherency bound can be divided among data items in
various ways ensuring that query incoherency is below the
incoherency bound. In this paper, we show that getting data
items independently is a costly option. This strategy ignores
the fact that the client is interested only in the aggregated
value of the data items and various aggregators can
disseminate more than one data item.

Second, if a single DA can disseminate all three data items
required to answer the client query, the DA can construct a

composite data item corresponding to the client query (50d1)

200d2)150d3) and disseminate the result to the client so that
the query incoherency bound is not violated. It is obvious that
if we get the query result from a single DA, the number of
refreshes will be minimum (as data item updates may cancel
out each other, thereby maintaining the query results within
the incoherency bound). As different data aggregators
disseminate different subsets of data items, no data aggregator
may have all the data items required to execute the client
query which is indeed the case in Example 1. Further, even if
an aggregator can refresh all the data items, it may not be able
to satisfy the query coherency requirements. In such cases the
query has to be executed with data from multiple aggregators.

A third option is to divide the query into a number of
subqueries and get their values from individual DAs. In that
case, the client query result is obtained by combining the
results of multiple subqueries. For the DAs given in
Example1, the query Q can be divided in two alternative ways:

Plan 1. Result of subquery 50d1) 150d3 is served by a1,

whereas value of d2 is served

by a2.

Plan 2. Value of d3 is served by a1, whereas result of

subquery 50d1) 200d2 is served by a2.

In both the plans, combining the subquery values at the client
gives the query result. But, selecting the optimal plan among
various options is not trivial. Intuitively, we should be
selecting the plan with lesser number of sub queries. But that
is not guaranteed to be the plan with the least number of
messages. Further, we should select the subqueries such that
updates to various data items appearing in a subquery have
more chances of canceling each other as that will reduce the
need for refresh to the client. In the above example, if updates

to d1 and d3 are such that when d1 increases, d3 decreases,
and vice versa, then selecting plan1 may be beneficial. We
give a method to select the query plan based on these
observations. While solving the above problem, we ensure that
each data item for a client query is disseminated by one and
only one data aggregator. Although a query can be divided in
such a way that a single data item is served by multiple DAs

Nadia Nisar

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 9; April-June, 2015

68

(e.g., 50d1) 200d2) 150d3 is divided into two subqueries

50d1) 130d2 and 70d2) 150d3), in doing so the same data
item is processed at multiple aggregators, increasing the
unnecessary processing load (further, in case of paid data
subscriptions it is not prudent to get the same data item from
multiple sources). By dividing the client query into disjoint
subqueries we ensure that a data item update is processed only
once for each query.

Subquery incoherency bounds are required to be derived using
the query incoherency bounds such that, besides satisfying the
client coherency requirements, the chosen DA (where the
subquery is to be executed) is capable of satisfying the
allocated subquery incoherency bound. For example, in plan1,
incoherency bound allocated to the subquery 50d1) 150d3
should be greater than 55(=50*0.5)150*0.2)as that is the
tightest incoherency bound which the aggregator a1 can satisfy
for the subquery 50d1) 150d3. We show that the number of
refreshes also depends on the division of the query
incoherency bounds among subquery incoherency bounds. A
similar result was reported for data incoherency bounds in
[11].

3. DATA DISSEMINATION COST MODEL

In this section, we present the model to estimate the number of
refreshes required to disseminate a data item while
maintaining a certain incoherency bound. There are two
primary factors affecting the number of messages that are
needed to maintain the coherency requirement: 1) the
coherency requirement itself and 2) dynamics of the data.

2.1 Incoherency Bound Model

Consider a data item which need to be disseminated at an
incoherency bound C, i.e., new value of the data item will be
pushed if the value deviates by more than C from the last
pushed value. Thus, the number of dissemination messages
will be proportional to the probability of jv(t) ≤ u(t)j greater
than C for data value v(t) at the source/aggregator and u(t) at
the client, at time t. A data item can be modeled as a discrete
time random process [10] where each step is correlated with
its previous step. In a push-based dissemination, a data source
can follow one of the following schemes:

Fig. 1: Number of pushes versus incoherency bounds.

Data source pushes the data value whenever it differs from the
last pushed value by an amount more than C.

1. Client estimates data value based on server specified
parameters [12], [16]. The source pushes the new data
value whenever it differs from the (client) estimated value
by an amount more than C.

In both these cases, value at the source can be modeled as a
random process with average as the value known at the client.
In case 2, the client and the server estimate the data value as
the mean of the modeled random process, whereas in case 1
deviation from the last pushed value can be modeled as zero
mean process. Using Chebyshev’s inequality [10]

P (|v(t) ≤ u(t)| > C) α 1=C
2
 (4)

Thus, we hypothesize that the number of data refresh
messages is inversely proportional to the square of the
incoherency bound. A similar result was reported in [5] where
data dynamics were modeled as random walks.

2.2 Data Dynamics Model

We considered two possible options to model data dynamics.
As a first option, the data dynamics can be quantified based on
standard deviation of the data item values.

Fig. 2: Number of pushes versus data sumdiff (a) C = 0:001, (b)
C = 0:01, and (c) C = 0:1.

whereas higher order coefficients
represent

We take an example to
show why standard

transient changes in the value of data
item.

deviation is not a good
measure of data We hypothesize that the cost of data
dynamics in our case:
Suppose data values dissemination for a data item can be
in consecutive instances for
a data item d1

approximated by a function of the
first FFT

are {0, 4, 0, 4, 0, 4, 0, 4}
whereas for

coefficient. Specifically, the cost of
data

another data item d2 values
are {0, 0, 0, 0, 4, dissemination for a data item will be
4, 4, 4}. Suppose both data
items are

proportional to data sumdiff defined
as:

disseminated with an
incoherency bound of
3. It can be seen that the
number of Rs = ∑ |si - si-1|, (5)
messages required for
maintaining the

i

incoherency bound will be
7 and 1 for data
items d1 and d2,
respectively, whereas both

where si and si-1 are the sampled
values of a

Query Planning for Dynamic Queries using Data Aggregators 69

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 9; April-June, 2015

data items have the same
standard deviation

data item S at ith and (i - 1)th time
instances

(=2:138). Thus, we need a
measure which

(i.e., consecutive ticks). In practice,
sumdiff

captures data changes along
with its

value for a data item can be calculated
at the

temporal properties. This
motivates us to

data source by taking running average
of

examine the second
measure. difference between data values for

consecutive ticks. For our
experiments, we

As a second option we
considered Fast calculated the sumdiff values using
Fourier Trans-form (FFT)
which is used in

exponential window moving average
with

the digital signal processing
domain to

each window having 100 samples and
giving

characterize a digital signal.
FFT captures 30 percent weight to the most recent
number of changes in data
value, amount of window.
changes, and their timings.
Thus, FFT can
be used to model data
dynamics but it has a

2.3 Combining
Data Dissemination

problem. To estimate the
number of Models
refreshes required to
disseminate a data item
we need a function over
FFT coefficients

Number of refresh messages is
proportional

which can return a scalar
value. The number to data sumdiff Rs and inversely
of FFT coefficients can be
as high as the

proportional to square of the
incoherency

number of changes in the
data value. Among

bound (C2). Further, we can see that
we need

FFT coefficients, 0th order
coefficient

not disseminate any message when
either

identifies average value of
the data item, data value is not changing (Rs = 0) or

incoherency bound is unlimited
(1=C2 = 0).

Thus, for a given data item S, disseminated with an
incoherency bound C, the data dissemination cost is

proportional to Rs=C
2

. In the next section, we use this data
dissemination cost model for developing cost model for
additive aggregation queries.

4. QUERY PLANNING FOR WEIGHTED ADDITIVE
AGGREGATION QUERIES

For executing an incoherency bounded continuous query, a
query plan is required. The query planning problem can be
stated as:

Inputs

1. A network of data aggregators in the form of a
relation f (A, D, C) specifying the N data aggregators

ak Є A(1 ≤ k ≤ N), set Dk ⊆ D of data items

disseminated by the data aggregator ak, and

incoherency bound tkj which the aggregator ak can

ensure for each data item dkj Є Dk.

2. Client query q and its incoherency bound Cq. An additive

aggregation query q can be represented as ∑ wqi dqi where

wqi is the weight of the data item d qi for 1 ≤ i ≤ nq.

Outputs

1. qk for 1 ≤ k ≤ N, i.e., subquery for each data aggregator

ak.

2. Cqk for 1 ≤ k ≤ N, i.e., incoherency bounds for all the
subqueries.

Thus, to get a query plan we need to perform following tasks:

1. Determining subqueries: For the client query q get

subqueries qks for each data aggregator.

2. Dividing incoherency bound: Divide the query
incoherency bound Cq among subqueries to get Cqk s

5. CONCLUSION

This paper presents a cost-based approach to minimize the
number of refreshes required to execute an incoherency
bounded continuous query. We assume the existence of a
network of data aggregators, where each DA is capable of
disseminating a set of data items at their prespecified
incoherency bounds. We developed an important measure for
data dynamics in the form of sumdiff which, as we discussed
in Section 2, is a more appropriate measure compared to the
widely used standard deviation based measures. For optimal
query execution we divide the query into subqueries and
evaluate each subquery at a judiciously chosen data
aggregator.

REFERENCES

[1] A. Davis, J. Parikh, and W. Weihl, “Edge Computing: Extending
Enterprise

[2] Applications to the Edge of the Internet,” Proc. 13
th

 Int’l World
Wide Web Conf.

[3] Alternate Track Papers & Posters (WWW), 2004.

Nadia Nisar

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 9; April-June, 2015

70

[4] D. VanderMeer, A. Datta, K. Dutta, H. Thomas, and K.
Ramamritham, “Proxy-Based Acceleration of Dynamically
Generated Content on the World Wide

[5] Web,” ACM Trans. Database Systems, vol. 29, pp. 403-443,
June 2004.

[6] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B.
Weihl,

[7] “Globally Distributed Content Delivery,”
[8] IEEE Internet Computing, vol. 6, no. 5, pp. 50-58, Sept. 2002.
[9] S. Rangarajan, S. Mukerjee, and P.
[10] Rodriguez, “User Specific Request Redirection in a Content

Delivery Network,” Proc. Eighth Int’l Workshop Web Content
[11] Caching and Distribution (IWCW), 2003.
[12] S. Shah, K. Ramamritham, and P. Shenoy, “Maintaining

Coherency of Dynamic Data in Cooperating Repositories,” Proc.

28
th

 Int’l Conf. Very Large Data Bases (VLDB), 2002.

[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,
Introduction to Algorithms. MIT Press and McGraw-Hill 2001.

[14] Y. Zhou, B. Chin Ooi, and K.-L. Tan, “Disseminating Streaming
Data in a Dynamic Environment: An Adaptive and Cost Based
Approach,” The Int’l J. Very Large Data Bases, vol. 17, pp.
1465-1483, 2008.

[15] “Query Cost Model Validation for Sensor Data,
 ”www.cse.iitb.ac.in/ ~grajeev/sumdiff/RaviVijay_BTP06.pdf,
2011.

[16] R. Gupta, A. Puri, and K. Ramamritham,
[17] “Executing Incoherency Bounded Continuous Queries at Web

Data Aggregators,” Proc. 14th Int’l Conf. World Wide Web
(WWW), 2005.

[18] A. Populis, Probability, Random Variable and Stochastic
Process. Mc. Graw-Hill, 1991.

[19] C. Olston, J. Jiang, and J. Widom, “Adaptive Filter for
Continuous Queries over Distributed Data Streams,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, 2003.

[20] S. Shah, K. Ramamritham, and C.
[21] Ravishankar, “Client Assignment in Content Dissemination

Networks for Dynamic Data,” Proc. 31st Int’l Conf. Very Large
Data Bases (VLDB), 2005.

[22] NEFSC Scientific Computer System,
http://sole.wh.whoi.edu/~jmanning//cruise/s erve1.cgi, 2011.

[23] S. Madden, M.J. Franklin, J.
[24] Hellerstein, and W. Hong, “TAG: A Tiny Aggregation Service

for Ad-Hoc Sensor Networks,” Proc. Fifth Symp. Operating
Systems Design and Implementation, 2002.

[25] D.S. Johnson and M.R. Garey, Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, 1979.

[26] S. Zhu and C. Ravishankar, “Stochastic Consistency and
Scalable Pull-Based Caching for Erratic Data Sources,” Proc.
30th Int’l Conf. Very Large Data Bases (VLDB) 2004.

[27] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong,
“Approximate Data Collection in Sensor Networks Using
Probabilistic Models,” Proc. 22nd Int’l Conf. Data Eng. (ICDE),
2006.

[28] A. Deshpande, C. Guestrin, S.R. Madden, J.M. Hellerstein, and
W.Hong, “Model-Driven Data Acquisition in Sensor Networks,”
Proc. 30th Int’l Conf. Very

[29] Large Data Bases (VLDB), 2004.
[30] Pearson Product Moment Correlation

Coefficient,http://www.nyx.net/~tmacfarl/S
TAT_TUT/correlat.ssi/, 2011.

[31] S. Agrawal, K. Ramamritham, and S.
[32] Shah, “Construction of a Temporal Coherency Preserving

Dynamic Data Dissemination Network,” Proc. IEEE 25th Int’l
Real-Time Systems Symp. (RTSS), 2004.

